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Abstract

Even though middleware support for grid computing
has been the subject of extensive research, scheduling poli-
cies for the grid context have not been much studied. In
addition to processor utilization, it is important to consider
the response times of jobs in evaluating the performance of
grid scheduling strategies. In this paper we propose dis-
tributed scheduling algorithms that use multiple simulta-
neous requests at different sites. Trace-based simulations
show that the use of multiple simultaneous requests pro-
vides significant performance benefits. We also show how
this scheme can be adapted to provide priority to local
jobs, without much loss of performance.

1 Introduction

Grid Computing [1] is emerging as a dominant tech-
nology for High-Performance Computing. Although there
has been considerable recent progress on building the soft-
ware infrastructure to enable transparent use of globally
distributed computers on the grid, the issue of job schedul-
ing on grids has not received much attention. An analy-
sis of the resource usage pattern at several supercomputer
centers (San Diego Supercomputer Center, National Cen-
ter for Supercomputer Applications, Cornell Theory Cen-
ter, KTH Royal Institute of Technology), shows an inter-
esting “sine wave” pattern. During evenings, the resource
requested reaches and sometimes exceeds the maximum
capacity of the system, while usage dips to a minimum in
the very early hours of the morning. By integrating cen-
ters in a computational grid, in addition to providing more
computation power than any single site can provide, the
time dependent and bursty nature of resource requests can
be better averaged by distributing the requests to different
centers. Effective scheduling is important in optimizing re-
source usage, but the task of scheduling is more complex
in a metacomputing environment since many clusters with

different local scheduling policies are involved.

In this paper, we consider the issue of meta-scheduling
of jobs among a number of geographically distributed cen-
ters. We first review previously proposed meta-scheduling
schemes, both centralized and distributed, and evaluate
them using trace-based simulation. We show that the cen-
tralized schemes (which however are not scalable) produce
schedules with lower slowdown and turn-around time than
a more scalable distributed scheme. We propose new dis-
tributed schemes that attempt to improve on previously
proposed schemes. The key idea we evaluate is that of re-
dundantly distributing each job to multiple sites instead of
only sending it to the most lightly loaded site. We show
that the new schemes provide significant reductions in av-
erage job slowdown and turn-around time. We also evalu-
ate the impact of user inaccuracy in estimation of job run-
times, and the effect of remote data transfer overhead on
the efficacy of the proposed schemes.

The paper is organized as follows. In Section 2, we
provide some background and review previously proposed
meta-scheduling schemes. In Section 3, we evaluate these
existing schemes through trace-based simulation. The re-
sults from Section 3 motivate the new schemes, which are
described in Section 4. In Section 5, we present results
of evaluation of the new schemes with the same job traces
used earlier. The impact of user inaccuracy in job runtime
estimation, and the modeling of remote data transfer over-
head are studied in Section 6 and Section 7. Related work
is covered in Section 8 and we conclude in Section 9.

2 Background and Review of Metaschedul-
ing Schemes
The goal of effectively utilizing the power of geograph-
ically distributed computing resources has been the subject
of many projects like Globus [5], Condor [6] and Legion
[9]. These systems provide a metacomputing framework



and focus on issues of security, fault tolerance, resource
location and resource co-allocation issues.

Job scheduling is usually visualized in terms of a 2D
chart with time along one axis (say vertical) and the num-
ber of processors along the other axis. Each job is repre-
sented as a rectangle whose height is the user estimated run
time and width is the number of processors required. The
surface of a schedule represents this 2D chart, as shown in
Figure 1.
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Figure 1. Surface/Load Information

2.1 Review of Metascheduling Schemes
In this section, we review metascheduling schemes dis-
cussed in [10].

2.1.1 Centralized Scheme

In the centralized model, the metascheduler maintains sur-
face information about all sites. All jobs are submitted to
the metascheduler. Based on the queue of jobs submitted,
and the surface information about all the constituent sites,
the metascheduler makes scheduling decisions. With this
model, the local sites do not perform any scheduling de-
cisions, but are only responsible for dispatching the jobs
that are supplied by the metascheduler, and providing in-
formation to the metascheduler when jobs complete and
free processors.

The centralized scheme is not very scalable because the
metascheduler must maintain a lot of detailed information
about the constituent sites. This scheme also does not fa-
cilitate the use of different priority schemes at the different
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Figure 2. Centralized Metascheduler

constituent centers. This can adversely affect the local jobs
while benefiting remote jobs.

2.1.2 Hierarchical Scheme

With the hierarchical scheme, the scheduling process is
shared between the metascheduler and the local sites. All
jobs are still submitted to the metascheduler. But un-
like the centralized scheme, jobs are not maintained in the
metascheduler queue until dispatch time. Instead, at sub-
mission time, the metascheduler sends the job to that site
at which the earliest start time is expected for it. Each site
maintains a local queue from which it schedules jobs for
execution. It is possible for different sites to use different
scheduling policies. Once submitted to a local scheduler,
the metascheduler has no further direct influence on the
scheduling on the job, and the job cannot be moved to an-
other site even if the load at the other site becomes lower
at some time in the future.
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Figure 3. Hierarchical Metascheduler

2.1.3 Distributed Scheme

This scheme is similar to the hierarchical scheme except
that there is a metascheduler at every site and jobs are sub-
mitted to the local metascheduler where the job originates.



The metaschedulers query each other periodically to col-
lect instantaneous load information. If any of the other

schedulers has a lower load, the job is transferred to the site Resource Usage Pattern for CTC Trace
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Figure 4. Distributed Metascheduler

3 Performance of Metascheduling Schemes
We evaluated the metascheduling schemes using a

5000-job contiguous subset of a year-long supercomputer Average Slowdown

workload trace from the Cornell Theory Center [4]. We 1.2

considered four sites, with two of them subject to a load 1 130
corresponding to the actual trace, and two of the sites en- 0.8 125
countering a heavier load. The heavier load was simulated 0.6 120
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by stretching the run-time of all jobs in the trace by a fac- 04

tor of 1.7. An analysis of the resource usage pattern at
several supercomputer centers (San Diego Supercomputer
Center, National Center for Supercomputer Applications,
Cornell Theory Center, KTH Royal Institute of Technol-
ogy), shows an interesting “sine wave” pattern. During
evenings, the resource requested reaches and sometimes
exceeds the maximum capacity of the system, while usage
dips to a minimum in the very early hours of the morn-
ing. Figure 5 shows the averaged instantaneous load over
the selected CTC trace, grouped by the time of day. We
simulated 4 sites that were geographically distributed, with
a maximum time difference of 3-hours among them. A
FCFS (First-Come First-Served) policy with EASY [12]
backfilling was used for all simulations.

We measured the average job turnaround time and aver-
age job slowdown, defined as the ratio of the response time
of a job to its actual run time.

Slowdown = (Wait Time + Run Time) / Run Time

Figure 6 shows the average slowdown for the three
metascheduling schemes described in the previous sec-
tion (Centralized, Hierarchical and Distributed). The slow-
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Figure 6. The overall slowdown of a greedy
distributed scheme, which distributes requests
based on instantaneous load, performs even
worse than the case when the sites are not inter-
connected (Independent). The unified scheme
represents a case where the entire computation
power is assumed to be present at a single site.
The values on the left end of the grid line indi-
cate the average slowdowns normalized to the
average slowdown when the sites are not inter-
connected. The values on the right end of grid
line indicates the absolute slowdowns.



downs for the different schemes are normalized with re-
spect to the average slowdown over all jobs, obtained by
having each of the sites independently scheduled, with only
their own local jobs (Independent). For comparison pur-
poses, another simulation was performed where all the jobs
streams were merged and scheduled on a single system that
had as many processors as all sites combined (Unified).

Our rationale for simulating the Unified case was that
its performance might serve as a reference for evaluat-
ing the performance of the distributed schemes. We were
surprised to find that the Centralized and Hierarchical
schemes achieved slightly lower average slowdown than
the Unified case. In order to understand the reason for this,
we looked at the average slowdowns of jobs in different
categories, based on their length (job duration) and width
(number of processors). On examining the schedules, we
found that the short-wide jobs were able to backfill better
on the Unified system (due to larger total number of pro-
cessors) and in turn inhibited many long-narrow jobs from
backfilling. In contrast, with the split systems (Centralized
and Hierarchical), short-wide jobs did not easily backfill
and create backfill-preventing “blockades” for long-narrow
jobs. So long-narrow jobs had better slowdown with the
split scenarios. Overall, although short-wide jobs did bet-
ter with the Unified scheme, the poorer performance of the
(larger number of) long-narrow jobs caused a lower aver-
age slowdown for the Unified scheme.

The greedy Distributed scheme also performed surpris-
ingly poorly. On looking at the category-wise slowdowns,
it was observed that very short (less than 15 minutes run-
time) jobs that required very few processors (less than 8)
had much higher slowdown with the Distributed scheme
than either the Centralized scheme or the Hierarchical
scheme. These jobs are the ones that generally get the
greatest benefit from backfilling. The results in Figure 6
highlight the fact that backfill dynamics are very complex.
Even if each site were to maintain complete global infor-
mation, the site that seems to offer the earliest anticipated
start at the time a job is submitted, may not necessarily be
the one that is actually able to start the job earliest. With
only summary information on system load, there is greater
likelihood that the most lightly loaded system may not al-
ways be the best choice - a short-narrow job might possibly
find a “hole” in the schedule of a more heavily loaded sys-
tem and thus start earlier than on a less loaded system. This
prompted us to evaluate a distributed scheme with multiple
simultaneous requests, that we describe next.

4 Proposed Metascheduling Schemes

We propose a distributed scheme which requires mini-
mal information about other sites, makes decisions based

on the current global picture and adapts itself to future
changes in resource usage.
4.1 K-Distributed Model

This scheme is similar to the distributed scheme, except
that the local metascheduler distributes each job to the K
least loaded sites. Each of these K sites schedules the job
locally. When a job is is able to start at any of the sites,
the site informs the metascheduler at the job-originating
site, which in turn contacts the K-1 other metaschedulers
to cancel the jobs from their respective queues. This op-
eration must be atomic to ensure that processor cycles are
not wasted by starting a job at more than one site.

By placing each job in the queue at multiple sites,
the expectation is that better backfilling will be facili-
tated, improving system utilization and reducing average
job turnaround times. However, a higher degree of “over-
booking” results in an increase in the amount of work done
at each local scheduler. Also, the amount of inter-site com-
munication and synchronization will increase as K is in-
creased. The parameter K can be varied depending upon
the scalability required.

4.2 K-Dual Queue M odéd

In addition to the utilization and turnaround times be-
ing the metric used for evaluating the scheduling model,
an important consideration might be that locally submit-
ted jobs get priority over remote jobs. We define remote
jobs as those jobs that are submitted to a site by the meta
scheduler of some other site. One possible way to to give
priority to local jobs is to specify that remote jobs are to
be executed on the system only when it does not adversely
affect the start times of any currently queued local jobs.
Thus the remote jobs only utilize the unused processor cy-
cles. This scheme develops on the K-distributed model and
incorporates priority for local jobs into the model.

Dual queues are used at each site - one for local jobs and
the other for remote jobs. When a job is submitted to the
meta scheduler at a site, it distributes it to the K least loaded
sites. The job is queued in the remote queue at these other
sites in addition to the being queued in the local queue at
the site where the job originates. Start time guarantees, if
any, are given only to jobs from the local queue. Local jobs
are given priority during backfilling.

5 Performance Evaluation

In Section 3 we showed the results for the existing
metascheduling schemes. In this section we compare the
results of the proposed schemes with the existing schemes.

Figure 8 and Figure 9 presents the results for K-
Distributed scheme with K as 4. The K-Distributed
scheme can be seen to have the best performance, with a
45% improvement in slowdown compared to the simple
greedy distributed scheme. The improvement in average
turnaround time is less than the improvement in average
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Figure 7. Dual Queue Scheduling There is a
separate queue for local jobs and remote jobs.
Jobs in the remote queue are dispatched only
when they backfill without violating the reserva-
tions of the jobs in the local queue.
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Figure 8. The proposed K-Distributed scheme
shows a 45% improvement in slowdown com-
pared to a greedy distributed scheme. The K-
Dual Queue model gives priority to local jobs
while still achieving an overall slowdown better
than the greedy distributed scheme.
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Figure 9. The proposed K-Distributed scheme
shows a 15% improvement in overall turnaround
compared to the greedy distributed scheme.

slowdown. This is because, the primary benefits are to
the the shorter jobs, which benefit much more from the
enhanced backfilling opportunities with the K-Distributed
scheme. The number of short jobs in supercomputer traces
generally far exceeds the number of long jobs, so that the
average job slowdown is influenced significantly by the
short jobs. In contrast, the average job turnaround time
tends to be influenced much more by the long jobs, which
do not get as much of a benefit from the K-Distributed
scheme.

The overall performance of the K-Dual scheme is
slightly worse than the K-Distributed scheme, but much
better than the greedy Distributed scheme. Since its ratio-
nale was to provide priority to local jobs, we examined the
performance of jobs, grouped by submission site. Since
we used two lightly loaded sites and two heavily loaded
sites, we summarize the results by grouping together all
jobs submitted at the lightly loaded sites, and similarly
grouping all jobs submitted at the heavily loaded sites. Fig-
ure 10 shows the effect of the different schemes on the
slowdowns of the jobs. When the sites are independent,
the jobs submitted at the lightly loaded sites do not expe-
rience external load created by load balancing and hence
have significantly lower average slowdown than the jobs
submitted at the heavily loaded sites. With the Distributed
scheme, these lightly loaded sites are subjected to exter-
nal load and the average slowdown of locally submitted
jobs increases significantly. In fact, an interesting inver-
sion happens: the average slowdown of jobs submitted at
the heavily loaded sites is lower than the average slow-
down of the jobs submitted at the lightly loaded sites! This
would be strongly objectionable if it happened in prac-
tice. A similar trend, but of a smaller magnitude is ob-
served with the K-Distributed scheme; the inversion still



occurs. With the K-Dual scheme, compared to the inde-
pendent case, the average slowdown for the jobs submitted
at the heavily loaded sites decreases significantly, and the
average slowdown of jobs submitted at the lightly loaded
sites increases slightly, but there is no inversion: the aver-
age slowdown of jobs from the lightly loaded sites is lower
than the average slowdown of jobs from the heavily loaded
sites. Thus, although the K-Dual scheme has a slightly
higher overall slowdown than the K-Distributed scheme, it
performs much better for the jobs originating at the lightly
loaded sites than the K-Distributed scheme, and the perfor-
mance of the jobs originating at the heavily loaded sites is
also very good.
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Figure 10. The K-Dual Queue scheme which
incorporates priority for local jobs, performs the
best for the lightly loaded sites.

This parameter K can be varied depending upon the
scalability desired. Figure 11 represents the performance
variation for different values of K. It may be seen that the
greatest benefit accrues in going from K=1 to K=2. There
is much less improvement in going from K=2 to K=3, and
virtually no change in going from K=3 to K=4. Thus,
there are diminishing returns as the value of K is increased.
Since the overhead of the distributed scheduling schemes
increases with K, a small value for K may be best overall.

6 Impact of Inaccuracies in User Estimates
of Runtime

User estimates of job runtime (specified as wall clock
limits for the job) can often be very inaccurate, especially
for short jobs. A number of studies have attempted to eval-
uate the impact of the inaccuracy of user estimates on met-
rics such as average job slowdown and average turnaround
time [12].

So it is of interest to evaluate the effect of inaccuracy
of job runtime estimates on the effectiveness of the pro-
posed distributed scheduling schemes. The simulation re-
sults of the previous sections were based on user specified
estimates of job runtime. Therefore in this section we re-
port on simulations where the actual runtime of a job was
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Figure 11. The overall slowdown for the K-
Distributed scheme improves as K is increased.
A similar trend is observed when comparing av-
erage turnaround times.

used also as the user-specified wall clock limit for the job,
i.e. we model a scenario where the user estimates of job
runtime are all perfectly accurate.

Figure 12 shows the average job slowdowns for the var-
ious schemes, with the actual slowdown being marked on
the vertical axis on the right side of the chart, and the
normalized slowdown (relative to the case of independent
sites) shown on the left side. It can be observed from Fig-
ure 13 that the impact of using multiple requests is even
more significant here than was the case in the previous sec-
tion (with inaccurate estimates). With K=2, the slowdown
is less than 65% of that with K=1; and with K=3, it is un-
der 45% of that with K=1. This is a consequence of the fact
that when user estimates are perfect, there are fewer pertur-
bations to create “holes” in the schedule. In contrast, when
user estimates are inaccurate, many jobs complete earlier
than anticipated when they were scheduled, thereby cre-
ating gaps in the schedule, that provide opportunities for
queued jobs to backfill. Therefore, since there are fewer
opportunities for short jobs to backfill in a schedule, the
creation of multiple simultaneous requests for a job at dif-
ferent sites provides a greater benefit to short jobs in terms
of backfill opportunities.

In order to verify the above conjecture regarding the dy-
namics of backfilling, we carried out an experiment where
the job traces were modified to make all jobs request an
identical number of processors. The number of proces-
sors was chosen so that the total load (total number of
processor-seconds for all jobs combined) was kept about
the same. When all jobs have the same width, there will
never be any “holes” in the schedule, i.e. there cannot
be any back-filling. Figure 14 shows the relative slow-
downs for different values of K when the K-distributed
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Figure 12. Average slowdowns for various
schemes with perfect user estimates
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Figure 13. Average Slowdowns for the K-
Distributed scheme with exact user estimate.
The impact of use of multiple requests is even
more significant here than for the case with inac-
curate user estimates. With K=2, the slowdown
is less than 65% of that with K=1; and with K=3,
it is under 45% of that with K=1.

scheme was applied to this trace. It can be seen that in-
deed now the performance is virtually unchanged as K is
increased. This strongly supports our belief that the un-
predictable and complex backfill dynamics (when schedul-
ing a real job trace) is the reason that the schemes with
multiple simultaneous reservations outperform the simple
greedy distributed scheduling scheme.
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Figure 14. The relative slowdowns for different
values of K for the equal-width job trace

7 Impact of Communication Overhead

We have so far assumed no overhead for job transfer.
In this section, we report on simulation results that incor-
porate overheads for job transfer. Since the job trace did
not have information about job memory requirements, we
considered the memory requirement of jobs to be random
and uniformly distributed between 100MB and 1GB. The
results presented are based on a very conservative assump-
tion of 10Mbps bandwidth between the sites.

From Figure 15 it can be observed that even with very
conservative assumptions about the communication band-
width available between the clusters, the K-Distributed and
K-Dual schemes perform better than the Unified and Cen-
tralized schemes.

To implement these schemes, it would suffice if every
cluster maintained an atomic binary semaphore associated
with each job that originated at that cluster. When one of
the K multiple requests starts job execution at the target
cluster, the target cluster contacts the originating cluster
and the originating cluster sets the semaphore associated
with the job. The originating cluster also cancels the job
requests at the other K-1 clusters. Every job requires a total
of K messages. Although the use of the proposed schemes
will impose some overhead compared to a simple greedy
distributed scheme, the cost of a semaphore operation and
message communication can be expected to be many or-
ders of magnitude smaller than the average runtime of the
jobs that are being scheduled through these schemes.
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Figure 15. The overall average slowdown for
various schemes with job transfer overhead.
The K-Distributed and K-Dual schemes per-
form better than the Unified and Centralized
schemes even with limited inter-site communi-
cation bandwidth.
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8 Reated Work

Many studies have focused on various aspects of meta-
computing [1]. Considerable effort has gone into the devel-
opment of systems like Globus [5, 3], Legion [9], Condor-
G [6] and UNICORE [13]. These systems deal with a va-
riety of problems such as of resource specification, discov-
ery, allocation and security issues in a metacomputing en-
vironment involving different administrative domains. The
MOL-Kernel [8] aims at providing a robust software in-
frastructure which can be used as a building block for a
large computational grid. However there has been little
work on the problem that we have addressed in this paper -
of developing effective distributed scheduling schemes for
the metacomputing environment.

Studies that have focused on developing scheduling
algorithms for the metacomputing environment include
[2, 7, 10, 11, 14]. Most of these studies present only cen-
tralized schemes. In [11] a few centralized schemes for
sequential jobs were evaluated. In [7], the performance of
a centralized meta scheduler was studied under different
levels of information exchange between the meta sched-
uler and the local resource management systems. In [2],
scheduling techniques were developed to efficiently deploy
parameter sweep applications over the grid. The impact of
advance reservations for meta jobs on the overall system
performance was studied in [14]. In [10], some centralized
and decentralized scheduling algorithms were proposed for
metacomputing; these were reviewed in Section 2.

9 Conclusion

Much recent effort has been concentrated on providing
middleware and software programming layers to facilitate

metacomputing. We have presented a distributed schedul-
ing model which adapts to changes in global resource us-
age. We also described how our scheme can be adapted
to provide priority to jobs submitted locally. Our initial
trace-based simulations indicate that the new algorithms
might be very effective for adaptive distributed scheduling
in computational grids.
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